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1 

Spatial optimization of watershed best management practices based on 1 

slope position units 2 

Abstract: Spatial optimization of best management practices (BMPs) is an effective way to select 3 

and allocate BMPs for watershed management such as soil and water conservation, nonpoint 4 

source pollution reduction, etc. The commonly used spatial units for BMP configuration (or BMP 5 

configuration units) include sub-basins, hydrologic response units (HRUs), farms, and fields. 6 

Normally, these spatial units are not homogeneous functional units from the perspective of 7 

physical geography at the hillslope scale (in terms of geomorphic and hydrologic conditions of the 8 

hillslope, for example), and thus cannot effectively represent the spatial relationships between 9 

BMPs and spatial locations with respect to hillslope processes from upstream to downstream. This 10 

makes it difficult to efficiently and rationally construct spatial optimizations for watershed BMPs. 11 

This paper proposes a spatial BMP optimization approach based on slope position units, which are 12 

homogeneous spatial units with physical geographic features. In the proposed approach, slope 13 

position units are used as BMP configuration units by which the relationships between BMPs and 14 

slope positions along a hillslope can be explicitly considered during BMP scenario initialization 15 

and optimization via genetic algorithm (i.e., NSGA-Ⅱ). A distributed and physically-based 16 

watershed model was used to evaluate the environmental effectiveness (i.e., the reduction rate of 17 

soil erosion), and a simple estimation method was developed to calculate the net cost of BMP 18 

scenarios. A case study was conducted in a small hilly watershed in the typical red-soil region of 19 

the Fujian province in southeastern China, which suffers severely from soil erosion. A simple 20 

system of three types of slope positions (i.e., ridge, backslope, and valley) was used to delineate 21 
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BMP configuration units. Four BMPs which are used in actual Chinese red-soil regions (Closing 22 

measures, Arbor-bush-herb mixed plantation, Low-quality forest improvement, and Orchard 23 

improvement) were considered in the proposed approach to achieve the multiple optimization 24 

objectives, which included maximizing the reduction ratio of soil erosion and minimizing the net 25 

cost of the BMP scenario. The proposed approach was compared with the approach which selects 26 

and allocates BMPs randomly on BMP configuration units. The results show that the proposed 27 

approach is more effective and efficient for proposing practical and effective BMP scenarios than 28 

the random approach. 29 

Key words: best management practices—spatial optimization—slope position units—watershed 30 

process simulation—genetic algorithm 31 

 32 

Best Management Practices (BMPs) are a series of management practices that implemented 33 

at different spatial scales (e.g., site, field, streambank, and sub-basin) to control soil erosion, 34 

reduce nonpoint source pollution, and protect the ecological environment of a watershed 35 

(Gitau et al. 2004; Turpin et al. 2005; Arabi et al. 2006; Panagopoulos et al. 2012). Spatial 36 

optimization of BMPs based on watershed modeling coupled with intelligent optimization 37 

algorithms (e.g., NSGA-Ⅱ; Deb et al. 2002) is an effective watershed management planning 38 

approach to proposing optimal BMP scenarios (i.e., selection and allocation of multiple BMPs for 39 

spatial units in watershed) as a balance between consideration of both environmental effectiveness 40 

and cost-benefit (Veith et al. 2004; Duinker and Greig 2007; Maringanti et al. 2011). Watershed 41 

models are used to simulate the watershed response (e.g., flow, sediment, nitrogen, and phosphorus) 42 
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to each BMP scenario and then evaluate its environmental effectiveness. One of the key elements 43 

that affects how a watershed responds to a BMP scenario is the spatial configuration of its BMPs 44 

on spatial units in the watershed (Heathwaite et al. 2000; Sahu and Gu 2009). 45 

The commonly used spatial units for BMP configurations (hereafter called BMPs 46 

configuration units) in existing studies of spatial BMP optimization include sub-basins (Chang et 47 

al. 2007; Chichakly et al. 2013), hydrologic response units (HRUs) (Maringanti et al. 2011), farms 48 

(Gitau et al. 2004), and fields (Srivastava et al. 2003; Kalcic et al. 2015b; Wu et al. 2017). A sub-49 

basin is normally regarded as a relatively closed and independent spatial unit. A sub-basin consists 50 

of hillslopes which can be further delineated into different homogeneous functional units from the 51 

perspective of physical geography (such as geomorphic, soil, and hydrologic conditions), e.g., 52 

landform positions (Band 1999). Since individual BMPs are often more effective when applied to 53 

specific homogeneous functional units, the sub-basin unit is too general for spatially-explicit BMP 54 

configurations. 55 

HRUs represent hydrologic homogeneous areas combined in terms of landuse, soil, and slope 56 

within one sub-basin (Arnold et al. 1998). One HRU may occupy several parts on a hillslope (e.g., 57 

separate ridge and valley areas), and HRUs are not internally linked within one sub-basin (Arnold 58 

et al. 2010; Bieger et al. 2016). This characteristic means that the impact of spatial relationships 59 

between BMP configuration units (e.g., the impact of upslope BMPs on downslope units) cannot 60 

be effectively assessed when those units are HRUs (Arnold et al. 2010). Therefore, the HRU is 61 

incapable of being the BMP configuration unit for spatially-explicit BMP configurations, 62 

especially for those BMPs (e.g., conservation management systems) which have different effects 63 
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on locations with various topographic, landuse, or soil conditions (Heathwaite et al. 2000; Jiang et 64 

al. 2007; Mudgal et al. 2010). 65 

Farms and fields are often defined according to land ownership, current landuse, or soil type 66 

boundaries (Srivastava et al. 2003; Gitau et al. 2004; Kalcic et al. 2015a; Wu et al. 2017). A farm 67 

or field may be delineated roughly across multiple landform positions or sub-basins (Srivastava et 68 

al. 2003; Kalcic et al. 2015a; Wu et al. 2017), which results in weak spatial relationships to 69 

homogeneous functional units. Such delineated spatial units face shortcomings similar to those 70 

faced by sub-basins and HRUs. Occasionally, farms or fields are delineated as a patchwork of 71 

gridded cells (even as individual gridded cells; Gaddis et al. 2014) within homogeneous functional 72 

units. This results in a large number of BMP configuration units, which can make the spatial 73 

optimization process computationally intensive or even unsolvable (Gaddis et al. 2014; Wu et al. 74 

2017). 75 

Therefore, the spatial units for BMP configurations should be homogeneous functional units 76 

with a comparatively limited count per study area, and currently used BMPs configuration units 77 

are not suitable. In this study, we propose to use slope positions as the spatial units for BMP 78 

configurations. There are two main reasons for this selection: the physical geographic features of 79 

spatial units, and the computational requirements of BMP optimization based on the spatial units. 80 

With respect to the first point, slope positions (also referred as landform positions or landscape 81 

positions) are spatially contiguous and topographically connected units along hillslope (e.g., ridge, 82 

backslope, and valley). Slope positions, which are basic landform units in a hierarchical structure 83 

of spatial units (i.e., slope position, hillslope, sub-basin, and so on), inherently relate to physical 84 
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watershed processes (Swanson et al. 1988; Band 1999; Qin et al. 2009; Ajami et al. 2016; Bieger 85 

et al. 2016). Slope positions affect various hillslope-scale processes (e.g., surface runoff and soil 86 

erosion, Mudgal et al. 2010) and hence affect both soil hydrologic properties (Jiang et al. 2007; 87 

Qin et al. 2012; Geng et al. 2017) and the effectiveness of BMPs (Bosch et al. 2012; Hernandez-88 

Santana et al. 2013). Researchers have suggested considering the characteristics of both BMPs and 89 

slope positions during the selection and allocation of BMPs (Berry et al. 2005; Goddard 2005; 90 

Pennock 2005; Mudgal et al. 2010). For example, Cai et al. (2012) empirically summarized the 91 

spatial relationships between BMPs and slope positions based on the characteristics of soil erosion 92 

in the Chinese red-soil region and the practical management experiences of soil and water 93 

conservation in this region. According to the integrated management scheme (figure 1) proposed 94 

by Cai et al. (2012), natural restoration and ecologic forest-grass management schemes are suitable 95 

on the upslope, development management practices such as economical forest-fruit could be 96 

conducted on the midslope, while terrace and riparian buffer strips are proper BMPs for the 97 

downslope. The other reason for considering slope positions as spatial units is that under a specific 98 

system of slope positions, the number of slope positions in a study area is normally limited and 99 

much lower than the count of gridded cells for the area. This can reduce the search space during 100 

spatial optimization and save computing resources. Thus, slope position units should be the proper 101 

spatial units for BMP configuration. 102 

 103 

(Figure 1 is about here.) 104 

 105 
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Currently, slope positions have not been used as BMP configuration units for spatial 106 

optimizations of BMPs at the watershed scale, although slope position units have been integrated 107 

into process-based distributed watershed models, such as SWAT+ (Bieger et al. 2016) and SMART 108 

(Soil Moisture And Runoff simulation Toolkit; Ajami et al. 2016). A few studies examined the 109 

effectiveness of BMPs on different slope positions based on watershed modeling by manually 110 

designed BMP scenarios (Sahu and Gu 2009; Mudgal et al. 2010). For example, using SWAT with 111 

a hillslope-discretization scheme, Sahu and Gu (2009) examined the effect of both size (i.e., 10%, 112 

20%, 30%, and 50% of sub-basin area) and spatial location (i.e., the mid-way of the hillslope or 113 

riparian buffer) of filter strips on reducing NO3-N in an agricultural watershed. In the study by 114 

Sahu and Gu (2009), the mid-way of the hillslope was defined as a percentage of sub-basin area 115 

instead of a homogeneous functional unit. Thus, this method of BMP allocation is not spatially 116 

explicit. Mudgal et al. (2010) used the APEX model to evaluate the impact of different slope 117 

position sequences (e.g., summit-backslope-footslope, footslope-backslope-summit, and so on) 118 

and the sizes of slope positions on the simulation of runoff and dissolved atrazine load at thirty 119 

designated plots with a size of 189m × 18m. Although the slope position sequences considered in 120 

Mudgal et al. (2010) were theoretical and some of them may not exist naturally (e.g., backslope-121 

footslope-summit), their results still indicated that taking account of slope positions may be 122 

beneficial when making management decisions. 123 

In this study, we examined the effectiveness of using slope positions as BMP configuration 124 

units in the spatial optimization of BMPs for mitigating soil erosion at the watershed scale. The 125 

spatial optimization of watershed BMPs based on slope position units was designed as a 126 
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methodological framework and then was implemented in a case study area by following tasks: (1) 127 

delineating slope position units from gridded DEM of the study area; (2) spatially distributed 128 

watershed modeling for simulating watershed processes related to soil erosion in the study area, 129 

which was used to evaluate the environmental effectiveness of each BMPs scenario; (3) developing 130 

a knowledge base of BMPs considered in the study area which contains the spatial relationships 131 

between BMPs and slope positions; and (4) adopting a multi-objective optimization method to 132 

apply the BMP knowledge base to optimizing BMP scenarios based on slope position units. The 133 

optimization results of the proposed approach were compared with those from the standard random 134 

optimization approach which selects and allocates BMPs randomly to configuration units. 135 

Materials and Methods 136 

Methodology. To use slope positions as BMP configuration units during spatial optimization of 137 

BMPs at the watershed scale, the design of such a new approach should deal with three key issues, 138 

which are different from those in currently-used approach. The first is how to delineate slope 139 

positions for an area. There are several methods of delineating slope positions by digital terrain 140 

analysis on digital elevation models (DEM) in a manner of either crisp or fuzzy classification (e.g., 141 

Pennock et al. 1987; Schmidt and Hewitt 2004; Qin et al. 2009; Miller and Schaetzl 2015). 142 

The second is to formalize the knowledge of the spatial relationships between BMPs and 143 

slope positions, which can be stored together with other BMP knowledge in a BMP knowledge 144 

base and then applied to the multi-objective optimization process. The spatial relationships 145 

between BMPs and slope positions can be summarized as two main types: the suitable BMPs for 146 

each type of slope position, and the spatial constraint among BMPs on different types of slope 147 



8 

position (normally along the hillslope from upstream to downstream; e.g., if a BMP is placed in a 148 

downslope unit, there is no need to place BMPs in its adjacent upslope units (Wu et al. 2017)). 149 

This knowledge of the spatial relationships between BMPs and slope positions can be formalized 150 

as rules and stored in the BMP knowledge base. 151 

The third is how to combine the formalized knowledge of the spatial relationships between 152 

BMPs and slope positions with intelligent optimization algorithms. Note that intelligent 153 

optimization algorithms applied to spatial BMP optimization normally initialize and generate BMP 154 

scenarios through selecting and allocating BMPs randomly to spatial configuration units. When 155 

knowledge of the spatial relationships between BMPs and slope positions is available in the form 156 

of rules, those BMP scenarios generated and evaluated by intelligent optimization algorithms will 157 

be constrained by this knowledge. Thus, many unreasonable BMP scenarios will not be considered 158 

in the multi-objective optimization process, which results in greater optimization efficiency. In 159 

addition, the optimal BMP scenarios resulting from such a process are more likely to be reasonable 160 

and practical. 161 

Based on the ideas presented above, the framework for the spatial optimization of watershed 162 

BMPs based on slope position units proposed in this study is shown in figure 2. The following 163 

parts of this section will describe the implementation of the proposed methodological framework 164 

in a case study area. 165 

 166 

(Figure 2 is about here.) 167 

 168 
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Study area. The Youwuzhen watershed (~5.39 km2), which is a part of Zhuxi watershed within 169 

Changting county of Fujian province, was chosen as the study area (figure 3). The study area is 170 

located in the typical red-soil hilly region in southeastern China and suffers from severe soil 171 

erosion (Chen et al. 2013). Its primary geomorphological characteristics include low hills with 172 

steep slopes (up to 52.9° and with an average slope of 16.8°) and broad alluvial valleys. The 173 

elevation ranges from 295.0 m to 556.5 m. The study area is under a mid-subtropical monsoon 174 

moist climate. The annual average temperature is 18.3 ℃. The annual average precipitation is 175 

1697.0 mm, while intense short-duration thunderstorm events contribute about three quarters of 176 

annual precipitation from March to August (Chen et al. 2013). The main landuse types are forest, 177 

paddy field, and orchard, with an area ratio of 59.8%, 20.6%, and 12.8%, respectively. Forests in 178 

the study area are mostly secondary or human-made forests with scattered Masson’s pine (Pinus 179 

massoniana) (Chen et al. 2013; Chen et al. 2017). Soil types in the study area are dominated by 180 

red earth (Humic Acrisols in FAO soil taxonomy, or Ultisols in US soil taxonomy) which was 181 

highly weathered from granite and inherently infertile, acidic, nutrient-deficient, poor in organic 182 

matter, and low capacity for holding and supplying water (He et al. 2004; Chen et al. 2013). 183 

 184 

(Figure 3 is about here.) 185 

 186 

Delineation of slope position units. Without loss of generality, this study uses a simple system of 187 

three types of slope positions (i.e., ridge, backslope, and valley), which has been applied in existing 188 

watershed modeling (e.g., Arnold et al. 2010; Ajami et al. 2016). In addition, a hierarchical 189 
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structure of spatial units, i.e., sub-basin, hillslope, and slope position, is maintained, so as to 190 

support the representation of the spatial relationships between BMPs and slope positions along a 191 

hillslope in the spatial BMP optimization. 192 

A gridded DEM with 10 m resolution of the Youwuzhen watershed was created from a 193 

1:10,000 topographical map with a contour interval of 5 m by the “Topo To Raster” tool of ArcGIS 194 

10.3 software. Sub-basins were delineated based on an accumulated threshold of 0.185 km2 (Chen 195 

et al. 2013). For each sub-basin, which consists of headwater, left hillslope, and right hillslope 196 

(relative to flow direction), hillslopes were then delineated according to the D8 flow direction 197 

model (O’Callaghan and Mark 1984). Each hillslope contains slope position units with 198 

downstream and upstream relationships. 199 

A prototype-based inference method proposed by Qin et al. (2009) was adopted to derive the 200 

fuzzy memberships of each cell to the three slope positions. This method was chosen because it 201 

can reasonably perform fuzzy inference on both attribute and spatial domains. Then, a crisp 202 

classification map of slope position units in the study area was obtained by a “hardening” process, 203 

i.e., applying the maximum membership principle cell-by-cell to all fuzzy membership maps of 204 

individual slope position types resulting from the prototype-based inference method (Qin et al. 205 

2009). 206 

The numbers of sub-basin, hillslope, and slope position units delineated in the study area are 207 

17, 35, and 105, respectively (figure 4). 208 

 209 

(Figure 4 is about here.) 210 
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 211 

Watershed processes modeling and calibration. SEIMS (Spatially Explicit Integrated Modeling 212 

System), a spatially explicit watershed modeling framework whose original hydrologic model is 213 

WetSpa (Water and Energy Transfer between Soil, plant, and atmosphere) (Liu et al. 2003; Liu 214 

2004), was selected because of its spatially-explicit representation of watershed processes and 215 

flexible modular framework for coupling various watershed processes modules and scenario 216 

analysis (Liu et al. 2014, 2016). SEIMS has been extended to simulate long-term watershed 217 

processes including hydrology, soil erosion, and plant growth. The representation of BMPs in 218 

SEIMS is implemented through the relative alterations of model parameters which characterize 219 

BMPs environmental effects in the locations of BMPs placement (Wu et al. 2017). SEIMS is still 220 

under continuous development and the source code is available on Github 221 

(https://github.com/lreis2415/SEIMS). 222 

The hydrologic processes simulated in this study include interception, surface depressional 223 

storage, surface runoff, infiltration, potential evapotranspiration, percolation, interflow, 224 

groundwater flow, and channel flow. The interception process is simulated by the maximum 225 

canopy storage method proposed by Aston (1979). The depression storage is estimated by an 226 

empirical equation suggested by Linsley et al. (1975). Surface runoff and infiltration are estimated 227 

using a modified coefficient method which depends on slope, land use, soil type, soil moisture, 228 

and rainfall intensity, etc. (Liu 2004). The potential evapotranspiration is estimated by Priestley-229 

Taylor equation (Priestley and Taylor 1972). The percolation process is simulated using the method 230 

in SWAT when the water content of the soil layer exceeds the field capacity and the layer below it 231 
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is not saturated (Neitsch et al. 2011). Interflow (or shallow subsurface lateral flow) is assumed to 232 

occur after percolation and cease when soil moisture is lower than field capacity and is simulated 233 

from Darcy’s Law and the kinematic approximation (Liu 2004). The groundwater flow is estimated 234 

with a linear reservoir method as a function of groundwater storage and a recession coefficient on 235 

sub-basin scale (Liu 2004). The overland flow routing algorithm is adapted from a diffusive 236 

transport approach proposed by Liu et al. (2003). The Muskingum method (Cunge 1969) is used 237 

for channel flow routing. 238 

Sediment yield caused by water erosion is estimated for each cell with the Modified Universal 239 

Soil Loss Equation (MUSLE) (Williams 1975) at each cell and is routed into channels with surface 240 

runoff. A simplified Bagnold stream power equation from Williams (1980) is used for sediment 241 

routing in stream channels, in which the maximum amount of sediment that can be transported 242 

from a reach segment is a function of the peak channel velocity (Neitsch et al. 2011). 243 

Plant growth process in SEIMS is adapted from SWAT model, which is a simplified version 244 

of EPIC plant growth model (Williams 1995) and utilizes a single plant growth model to simulate 245 

all types of land covers. 246 

The data necessary for watershed modeling and calibration based on SEIMS (i.e., the spatial 247 

data such as DEM, soil, landuse, and climate data, and site-monitoring data at the watershed outlet) 248 

were collected. The landuse map was manually interpreted from ALOS image derived in 2009 249 

(Chen et al. 2013). The soil type map was from the Second National Soil Survey of Changting 250 

county with a scale of 1:50,000 (Chen et al. 2013). Soil properties such as mechanical composition 251 

and organic matter were measured from field samplings (Chen et al. 2013; Xie et al. 2015). Other 252 
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soil water characteristics (e.g., soil hydraulic conductivity, and field capacity) were calculated with 253 

the SPAW model (Saxton and Rawls 2006). Soil erodibility factors, cover management factors, 254 

and conservation practice factors for the USLE model were drawn from the study in this area by 255 

Chen and Zha (2016). Daily meteorological data and precipitation were derived from National 256 

Meteorological Information Center of China Meteorological Administration data and the local 257 

monitoring station, respectively. The periodic monitoring flow and sediment discharge data at the 258 

watershed outlet from 2013 to 2015 were provided by the Soil and Water Conservation Bureau of 259 

Changting county, Fujian province, China. 260 

To calibrate the watershed model for the following spatial optimization of BMPs, we selected 261 

those periods with available data and rainstorms which had more than three consecutive days of 262 

rainfall and for which there are complete records of runoff generation and sediment yield. As a 263 

result, the years of 2013 and 2014 were selected for watershed model calibration, and the year of 264 

2015 was selected for validation of the watershed model. 265 

Model performance indicators such as NSE (equation 1), PBIAS (equation 2), and RSR 266 

(equation 3) recommended by Moriasi et al. (2007) were used to evaluate the watershed model. 267 
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  (3) 270 

where Yi
obs and Yi

sim are the ith observed and simulated values, respectively; Ymean is the average 271 

of all observed values; n is the number of observed values. 272 

The modeling performance of the manually calibrated SEIMS model for flow discharge and 273 

sediment export, both in the calibration and validation periods, are shown in figures 5 and 6, 274 

respectively. The calibration of flow has an NSE, RSR, PBIAS, and R2 of 0.48, 0.72, -16.24%, and 275 

0.58, respectively (figure 5a). According to the general performance ratings for simulations at a 276 

monthly time step by Moriasi et al. (2007), the model performance is satisfactory when the model 277 

results receive a value of NSE, RSR, and PBIAS better than 0.50, 0.60, and ±25% (for sediment it 278 

is ±55%), respectively. Thus, the performance of flow is approximately satisfactory. For sediment, 279 

the NSE, RSR, PBIAS, and R2 are 0.31, 0.83, -40.55%, and 0.36, respectively (figure 6a). Although 280 

the overall simulated trend is consistent with the observed values according to R2, the simulation 281 

results still overestimated the low values and underestimated the peak sediment exports (figure 6a). 282 

This is similar to other cases in which model simulations are generally poorer for shorter time 283 

steps than for longer time steps (Engel et al. 2007). The performance of sediment can be regarded 284 

as acceptable. 285 

 286 

(Figure 5 is about here.) 287 

(Figure 6 is about here.) 288 

 289 
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Although the performance statistics for the validation period are poor for flow and sediment 290 

(figure 5b and figure 6b), the general trends of hydrographs in the study area can still be captured 291 

by the calibrated SEIMS model from a visual perspective. This means the calibrated model can be 292 

used for the following spatial optimization of BMPs. Therefore, the year of 2013 was used as 293 

simulation period and the scenario for model calibration was selected as the baseline scenario. The 294 

BMP scenarios generated during the spatial optimization will be evaluated for 2013 by the 295 

calibrated SEIMS model. 296 

BMPs knowledge base. Four BMPs that have been implemented in Changting county for soil and 297 

water conservation are considered in this study: Closing measures (CM), Arbor-bush-herb mixed 298 

plantation (ABHMP), Low-quality forest improvement (LQFI), and Orchard improvement (OI). 299 

Their brief descriptions are listed in table 1 (Chen et al. 2013; Chen et al. 2017). 300 

 301 

(Table 1 is about here.) 302 

 303 

The BMP knowledge base for this study mainly includes three components: the cost-benefit, 304 

the environmental effects, and the spatial relationships between BMPs and slope positions. The 305 

first two components are normal components in BMP knowledge bases for existing approaches to 306 

spatial BMP optimization, while the third is specific to the proposed approach. 307 

The cost-benefit for each BMP consists of initial implementation cost, annual maintenance 308 

cost, and annual benefit estimated from local government project (table 2; Wang 2008). 309 

 310 

(Table 2 is about here.) 311 
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 312 

For evaluating the environmental effects of BMPs on mitigating soil erosion, the relative 313 

improvements of major parameters related to hydrologic and soil erosion processes were collected 314 

and are listed in table 3. Relative changes to the conservation practice factors in the USLE model 315 

(i.e., USLE_P) in table 3 were adopted from the calibrated SWAT model in Chen et al. (2013). 316 

Other factors were calculated directly (e.g., organic matter, bulk density, and total porosity) or 317 

indirectly (e.g., soil hydraulic conductivity and soil erodibility factor of USLE model) from the 318 

sample-plot data provided by Fujian Soil and Water Conservation Monitoring Station et al. (2010). 319 

These sample-plot locations were collected from locations where their respective BMPs have been 320 

implemented for 8 years, and they were compared with control groups retaining their original 321 

landuses without the implementation of BMPs. 322 

 323 

(Table 3 is about here.) 324 

 325 

As stated above, the knowledge of the spatial relationships between the four BMPs and slope 326 

positions were formalized as two types of rules for the study area. Rules of the first type, i.e., the 327 

suitable BMPs for each type of slope position, are generalized from the description in table 1 and 328 

formalized in table 4. Rules of the second type, i.e., the spatial constraint among BMPs on different 329 

types of slope position along the hillslope from upstream to downstream, are based on an 330 

effectiveness grade which represents the degree of improvement in the area of mitigating soil 331 

erosion (table 4). The effectiveness grades range from 1 to 5, with higher-numbered grades 332 
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representing better effectiveness. In the current study, a simple rule is adopted according to local 333 

experience (Chen et al. 2013), i.e., the effectiveness grade of the BMP placed on the backslope of 334 

a hillslope should be greater than or equal to that of the BMP placed on the ridge of the same 335 

hillslope. For example, the effectiveness order of BMP sequences for ridge and backslope of a 336 

hillslope should be ABHMP-ABHMP > CM-ABHMP > CM-CM, while the solution of ABHMP-337 

CM will be ignored because the effectiveness grade of CM (i.e., 3) is less than that of ABHMP 338 

(i.e., 5). 339 

 340 

(Table 4 is about here.) 341 

 342 

Multi-objective optimization by intelligent optimization algorithm. The Non-dominated Sorted 343 

Genetic Algorithm (NSGA-Ⅱ) (Deb et al. 2002) was selected as the intelligent optimization 344 

algorithm for the proposed approach. NSGA-Ⅱ can ensure that the optimization solutions are 345 

diverse and well distributed in all objective functions under consideration according to its non-346 

dominated sorting and elitism properties (Zitzler and Thiele 1999). NSGA-Ⅱ has been widely 347 

applied to spatial BMP optimization with multi-objectives (e.g., maximum environmental 348 

effectiveness and minimum net cost) (Rodriguez et al. 2011; Panagopoulos et al. 2012; Yang and 349 

Best 2015). 350 

When the NSGA-Ⅱ is applied to spatial BMP optimization, an individual of a population 351 

corresponds to a BMP scenario and is represented as a chromosome with genes as variables (i.e., 352 

BMP configuration units with selected BMP type or without BMP). The execution of NSGA-Ⅱ 353 
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includes an initialization process of initializing a population of individuals and then a circular 354 

process of evaluation and generation of BMP scenarios. For each round (or, equivalently, 355 

generation) of the process, the fitness of each individual in the current population is evaluated by 356 

objective functions (e.g., environmental effectiveness based on the calibrated watershed model, 357 

and economic benefit calculation by BMPs cost model). In the following selection process, the 358 

fittest individuals are selected (i.e., duplicated for next round) and those weak individuals are 359 

discarded from the population. Those selected individuals are stored as an elite set which is known 360 

as near Pareto optimal solutions (Deb et al. 2002) and will be updated by successive generations. 361 

The offspring are generated by crossover and mutation operators (or, equivalently, regeneration), 362 

and then are added to the population for next round of evaluation. This process is repeated until a 363 

given maximum generation number has been reached. 364 

When the NSGA-Ⅱ is adopted by the proposed approach to spatial BMP optimization, the 365 

spatial relationships between BMPs and slope positions along the hillslopes are incorporated into 366 

the initialization and regeneration (i.e., crossover and mutation) of BMP scenarios. In the 367 

initialization process, the valley unit of each hillslope is first randomly allocated one suitable BMP 368 

or left without a BMP. Then, an iteration procedure is performed to select and allocate BMPs for 369 

other slope position units in an upstream-downstream order (i.e., backslope and ridge by sequence) 370 

based on the rules of spatial relationships between BMPs and slope positions along the hillslope. 371 

In the regeneration process, every BMP scenario generated after crossover and mutation operations 372 

is adjusted according to the rules of spatial relationships between BMPs and slope positions. In 373 

such a way, every BMP scenario evaluated in the spatial BMP optimization is reasonable in terms 374 
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of the spatial relationships between BMPs and slope positions, which means that the same will be 375 

true of every optimal BMP scenario. Unreasonable BMP scenarios will not be considered, which 376 

results in higher optimization efficiency. 377 

The multi-objectives in this study are maximizing the reduction rate of soil erosion and 378 

minimizing the net cost of BMPs (equation 4). The calibrated SEIMS model for the Youwuzhen 379 

watershed is used to evaluate the reduction rate of soil erosion from each BMP scenario in 380 

comparison to a baseline scenario (equation 5). A simple BMP cost model (equation 6) is used to 381 

calculate the net cost of each BMP scenario according to the cost-benefit knowledge in the BMP 382 

knowledge base. 383 

    min ( ) ( )f X g X      (4) 384 

where X represents a BMP scenario; f(X) is the reduction rate of soil erosion under X compared to 385 

that under the baseline scenario (equation 5); and g(X) is the net cost of X (equation 6). 386 
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where v(0) and v(X) are the total amounts of soil erosion (kg) under baseline scenario and the X 389 

scenario, respectively; n is the number of BMP configuration units (slope position units); A(xi) is 390 

the area covered by the BMP implemented in the ith configuration unit; yr is the years since the 391 

BMP was implemented, which is 8 in this study (see table 3); and C(xi), M(xi), and B(xi) are unit 392 

costs for initial implementation, annual maintenance, and annual benefit (see table 2), respectively. 393 

Experimental design. The effectiveness of the proposed approach was compared with the 394 
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traditional approach to spatial BMP optimization (hereafter referred as the random approach) 395 

which initializes and generates individuals by selecting and allocating BMPs on genes 396 

(corresponding to BMP configuration units, i.e., slope position units in this study) randomly. 397 

The proposed approach and the random approach were implemented based on a Python 398 

framework for evolutionary computation known as DEAP (Fortin et al. 2012). SCOOP (Hold-399 

Geoffroy et al. 2014) was incorporated to improve computation efficiency by distributing tasks 400 

dynamically across Linux cluster. Thus, the experiment was conducted on a Linux cluster which 401 

consists of one management node and four computation nodes. Each node has two Intel® Xeon 402 

E5645 CPUs and each CPU has six cores. 403 

In the evaluation experiment, the main parameter settings of NSGA-Ⅱ are the same for both 404 

approaches. The initial population size is 60 with a selection rate of 0.8 and a maximum generation 405 

number of 100. The crossover probability and the mutation probability are 0.75 and 0.15, 406 

respectively. 407 

The proposed approach was evaluated with respect to two aspects, i.e., the quality of near 408 

Pareto optimal solutions and the computational efficiency. The quality of near Pareto optimal 409 

solutions was evaluated via three methods. The first is visual interpretation of the convergence and 410 

diversity of near Pareto optimal solutions derived from all generations. The second is based on the 411 

hypervolume index (Zitzler and Thiele 1999), which measures the volume (area for two-412 

dimensions) of objective space covered by a set of near Pareto optimal solutions. A higher 413 

hypervolume index indicates a better quality of solutions. The change of the hypervolume index 414 

with generations can provide a quantitative comparison of the quality of near Pareto optimal 415 
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solutions considering both convergence and diversity (Zitzler et al. 2003). In this study, the 416 

reference point for calculating the hypervolume index is (300, -1) which represents the economic 417 

benefit being 300 million RMBY and the reduction rate of soil erosion being -1. Note that both the 418 

hypervolume index and near Pareto optimal front represent evaluations from a mathematical 419 

perspective and have less practical meaning than the spatial configuration of BMP scenarios when 420 

it comes to decision-making for watershed management. Therefore, the third method is to discuss 421 

the rationality of the spatial configurations of examples selected from the near Pareto optimal 422 

solutions. 423 

Results and Discussion 424 

Near Pareto optimal solutions derived from all generations. Figure 7 shows the near Pareto 425 

optimal solutions derived from all generations by the proposed approach and the random approach. 426 

From the visual interpretation, the proposed approach shows a better convergence and a similar 427 

diversity in the Pareto optimal front, compared to the random approach (figure 7). During the 428 

spatial optimization, the calibrated SEIMS model for the Youwuzhen watershed was executed to 429 

evaluate 1476 BMP scenarios for the proposed approach and 1523 BMP scenarios for the random 430 

approach, while the total runtimes were 8.7 and 11.8 hours, respectively. This means that with the 431 

constraint of the relationships between BMPs and slope positions, the proposed approach can 432 

reduce the search space of optimal solutions, and hence improve the computational efficiency 433 

(Maier et al. 2014). 434 

 435 

(Figure 7 is about here.) 436 
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 437 

The change of hypervolume index with generations. The change of the hypervolume index with 438 

generations (figure 8) shows that the proposed approach has an obvious advantage over the random 439 

approach when the generation number is less than 35, especially in the first 10 generations (e.g., 440 

figure 9a and figure 9b). With the increase of generation number, the hypervolume index values 441 

from the two approaches are similar until the random approach produced steadily higher values of 442 

the hypervolume index after the 65th generation. 443 

This effect might be a result of the fact that the search space for the proposed approach is 444 

constrained by the BMP knowledge base, and thus is a subset of the search space for the random 445 

approach. Therefore, the proposed approach can lead individuals (i.e., BMP scenarios) to the ideal 446 

Pareto optimal front more rapidly than the random approach at the early phase of optimization 447 

(e.g., figure 9a and figure 9b). This result also suggested that it can be effective to utilize the rules 448 

of spatial relationships between BMPs and slope positions as a priori knowledge to achieve better 449 

solutions during optimization (Bi et al. 2015; Wu et al. 2017). In the late phase of the optimization, 450 

the random approach can generate scenarios beyond the search space of the proposed approach 451 

and could reach a higher hypervolume index value (e.g., figure 8 and figure 9d). This phenomenon 452 

is common in similar comparison studies, such as Pyo et al. (2017). Although this means a better 453 

set of near Pareto optimal solutions from the mathematical perspective, the scenarios in this set 454 

might not be practical in terms of their spatial configurations of BMPs, as discussed in the 455 

following section. 456 

 457 
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(Figure 8 is about here.) 458 

(Figure 9 is about here.) 459 

 460 

Spatial configuration of selected BMP scenarios. BMP scenarios from each approach with similar 461 

economic effectiveness (i.e., 0.5 million RMBY net cost) were randomly selected from the near 462 

Pareto optimal solutions of the 10th generation (figure 9b) and mapped as figure 10. The BMP 463 

scenario from the proposed approach could achieve a 32.4% reduction rate of soil erosion while 464 

that from the random approach could achieve 21.2%. In the BMP scenario shown in figure 10a, 465 

the BMPs allocated by the proposed approach are mainly Closing Measures (CM) and Arbor-bush-466 

herb mixed plantation (ABHMP), and are distributed mainly on ridges and backslopes. This 467 

matches the relationships between BMPs and slope positions. However, in the BMP scenario from 468 

the random approach (figure 10b), there are several inappropriate allocations violating the 469 

relationships between BMPs and slope positions, e.g., allocating Orchard improvement (OI) on 470 

ridges and Closing measures (CM) on valleys. These inappropriate allocations make this BMP 471 

scenario unreasonable for practical engineering. Thus, in the 10th generation at the early phase of 472 

optimization, the proposed approach can derive more practicable and effective optimal BMP 473 

scenarios than the random approach. 474 

 475 

(Figure 10 is about here.) 476 

 477 

Another two BMP scenarios from the proposed approach and the random approach with 478 

similar environmental effectiveness (i.e., 48% reduction rate of soil erosion) were randomly 479 
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selected from the near Pareto optimal solutions of the 100th generation (figure 9d) and mapped in 480 

figure 11. The net cost of the scenario from the proposed approach (i.e., 1.22 million; figure 11a) 481 

would be higher than the cost of the scenario from the random approach (i.e., 1.15 million; figure 482 

11b). From the mathematical view, the random method generates a more optimal solution than the 483 

proposed approach. However, the spatial BMP configuration of the scenario from the random 484 

approach still shows several inappropriate allocations which violate the relationships between 485 

BMPs and slope positions, which means that it is impractical for watershed management. 486 

 487 

(Figure 11 is about here.) 488 

 489 

Conclusion 490 

This paper proposes a spatial optimization approach to watershed BMPs based on slope 491 

position units. In the proposed approach, slope position units, as homogeneous spatial units with 492 

physical geographic features, are used as BMP configuration units by which the spatial 493 

relationships between BMPs and slope positions can be explicitly considered in spatial BMP 494 

optimization. 495 

The proposed approach combined with a spatially distributed and physically-based watershed 496 

model (i.e., SEIMS) and a genetic algorithm (i.e., NSGA-Ⅱ) was applied to a small watershed for 497 

spatial BMP optimization with the multi-objectives of maximizing the reduction ratio of soil 498 

erosion and minimizing the net cost of the BMP scenario. Experimental results show that the 499 

proposed approach is effective and efficient at proposing practicable BMP scenarios for integrated 500 
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watershed management, when compared to the random approach. 501 

The proposed spatial optimization approach to watershed BMPs based on slope position units 502 

can be easily combined with other watershed models (e.g., SWAT+; Bieger et al. 2016), intelligent 503 

optimization algorithms (e.g., SPEA2; Zitzler et al. 2001), slope positions systems (e.g., five slope 504 

positions used in Qin et al. (2009)), and other BMPs available for different study areas. 505 

This study also raises several study issues for future work: 1) comparison with the adoption 506 

of other spatial BMP configuration units; 2) improvement of the intelligent optimization algorithm 507 

to accelerate the evolution of Pareto optimal solutions, especially for large watersheds with high 508 

numbers of slope position units and many BMPs under consideration. 509 
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Table 1 A brief description of four BMPs which have been adopted in Changting county and 2 

considered in this study. 3 

Table 2 Cost-benefits of four BMPs estimated from local government project (unit: 10,000 4 

RMBY/km2). 5 

Table 3 Effects of four BMPs on major soil properties and USLE factors after 8 years of 6 

implementation, according to the sample data in Changting county. 7 

Table 4 The knowledge on the spatial relationships between BMPs and slope positions. 8 
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Table 1 10 

A brief description of four BMPs which have been adopted in Changting county and considered 11 

in this study. 12 

BMP Brief description 

Closing 

measures (CM) 

Facilitate afforestation from human disturbance (e.g., tree felling and 

grazing). Suitable for the ridge area and upslope positions that suffer 

low or moderate soil erosion. 

Arbor-bush-herb 

mixed plantation 

(ABHMP) 

Planting trees (e.g., Schima superba and Liquidambar formosana), 

bushes (e.g., Lespedeza bicolor), and herbs (e.g., Paspalurn wettsteinii) 

in level trenches with compound fertilizer in positions with high-to-

violent soil and water losses. Suitable for all slope positions. 

Low-quality 

forest 

improvement 

(LQFI) 

Improving the infertile forest by applying compound fertilizer to every 

hole (40 cm × 40 cm × 40 cm) in the uphill position of crown projection. 

Suitable for the moderate or serious eroded land in the upslope and steep 

backslope positions. 

Orchard 

improvement 

(OI) 

Constructing level terraces, drainage ditches, storage ditches, irrigation 

facilities and roads, planting economic fruit, and interplanting grasses 

and Fabaceae (Leguminosae) plants in orchards on the middle and down 

slope positions under better water and fertilizer conditions. 

 13 

  14 
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Table 2 15 

Cost-benefits of four BMPs estimated from local government project (unit: 10,000 RMBY/km2) 16 

BMP Implementation cost Annual maintenance cost Annual benefit 

CM 15.5 1.5 2.0 

ABHMP 87.5 1.5 6.9 

LQFI 45.5 1.5 3.9 

OI 420 20 60.3 

Notes: CM = Closing measures, ABHMP = Arbor-bush-herb mixed plantation, LQFI = Low-quality forest 17 

improvement, OI = Orchard improvement. 18 

Source: Wang (2008) 19 

  20 
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Table 3 21 

Effects of four BMPs on major soil properties and USLE factors after 8 years of implementation, 22 

according to the sample data in Changting county. 23 

BMP OM* BD PORO† SOL_K USLE_K‡ USLE_P‡ 

CM 1.22 0.98 1.02 0.81 1.01 0.90 

ABHMP 1.45 0.93 1.07 1.81 0.82 0.50 

LQFI 1.05 0.87 1.13 1.71 0.81 0.50 

OI 2.05 0.96 1.03 1.63 0.88 0.75 

Notes: Values in table are relative changes (i.e., multiply) corresponding to the original properties. 24 

CM = Closing measures, ABHMP = Arbor-bush-herb mixed plantation, LQFI = Low-quality forest 25 

improvement, OI = Orchard improvement, OM = Organic matter, BD = Bulk density, PORO = Total porosity, 26 

SOL_K = Soil hydraulic conductivity. 27 

* The effect on organic matter is the same as on soil organic carbon. 28 

† The effect on total porosity is the same as on field capacity, wilting point, etc. 29 

‡ USLE_K and USLE_P are soil erodibility factor and conservation practice factor, respectively. 30 

 31 

  32 
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Table 4 33 

The knowledge on the spatial relationships between BMPs and slope positions. 34 

BMP Suitable slope positions Suitable landuses Effectiveness grade 

CM ridge, backslope forest 3 

ABHMP ridge, backslope, and valley forest, orchard 5 

LQFI backslope forest 4 

OI valley forest, orchard 4 

Notes: CM = Closing measures, ABHMP = Arbor-bush-herb mixed plantation, LQFI = Low-quality forest 35 

improvement, OI = Orchard improvement 36 

 37 

 38 
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Figure captions 1 

Figure 1 Illustration of an integrated management scheme for soil and water conservation in 2 

southeast China (adapted from Cai et al. (2012)). 3 

Figure 2 The proposed framework for the spatial optimization of watershed BMPs based on slope 4 

position units. 5 

Figure 3 Map of the Youwuzhen watershed in Fujian province, China. 6 

Figure 4 Slope position units delineated in the Youwuzhen watershed. 7 

Figure 5 Calibration (a) and validation (b) of the simulated flow discharge (m3/s) at the watershed 8 

outlet of the study area. 9 

Figure 6 Calibration (a) and validation (b) of the simulated sediment export (kg) at the watershed 10 

outlet of the study area. 11 

Figure 7 Near Pareto optimal solutions derived from the first to 100th generation by the proposed 12 

approach (a) and the random approach (b). 13 

Figure 8 Changes in the hypervolume index with generations by the proposed approach and the 14 

random approach, respectively. 15 

Figure 9 Comparison of near Pareto optimal solutions by the proposed approach and the random 16 

approach under different generations (a: the first generation, b: the 10th generation, c: the 35th 17 

generation, d: the 100th generation). 18 

Figure 10 Comparison of the BMP scenarios selected randomly from the near Pareto optimal 19 

solutions of the 10th generation from the proposed approach (a: 32.4% reduction rate of soil 20 

erosion and 0.51 million RMBY net cost) and the random approach (b: 21.2% reduction rate 21 
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of soil erosion and 0.53 million RMBY net cost), respectively. (CM = Closing measures, 22 

ABHMP = Arbor-bush-herb mixed plantation, LQFI = Low-quality forest improvement, OI 23 

= Orchard improvement.) 24 

Figure 11 Comparison of the BMP scenarios selected randomly by the near Pareto optimal 25 

solutions of the 100th generation from the proposed approach (a: 47.7% reduction rate of soil 26 

erosion and 1.22 million RMBY net cost) and the random approach (b: 47.9% reduction rate 27 

of soil erosion and 1.15 million RMBY net cost), respectively. (CM = Closing measures, 28 

ABHMP = Arbor-bush-herb mixed plantation, LQFI = Low-quality forest improvement, OI 29 

= Orchard improvement.) 30 

  31 
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Figure 1 32 

Illustration of an integrated management scheme for soil and water conservation in southeast 33 

China (adapted from Cai et al. (2012)). 34 

 35 

 36 
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Figure 2 38 

The proposed framework for the spatial optimization of watershed BMPs based on slope position 39 

units. 40 

 41 
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Figure 3 43 

Map of the Youwuzhen watershed in Fujian province, China. 44 

 45 

 46 
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Figure 4 48 

Slope position units delineated in the Youwuzhen watershed. 49 

 50 

 51 
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Figure 5 53 

Calibration (a) and validation (b) of the simulated flow discharge (m3/s) at the watershed outlet of 54 

the study area. 55 

 56 

(a) 57 

 58 

(b) 59 
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Figure 6 61 

Calibration (a) and validation (b) of the simulated sediment export (kg) at the watershed outlet of 62 

the study area 63 

 64 

(a) 65 

 66 

(b) 67 
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Figure 7 69 

Near Pareto optimal solutions derived from the first to 100th generation by the proposed approach 70 

(a) and the random approach (b). 71 

 72 

 73 

(a)                              (b) 74 

 75 
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Figure 8 77 

Changes in the hypervolume index with generations by the proposed approach and the random 78 

approach, respectively. 79 

 80 

 81 

  82 
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Figure 9 83 

Comparison of near Pareto optimal solutions by the proposed approach and the random approach 84 

under different generations (a: the first generation, b: the 10th generation, c: the 35th generation, d: 85 

the 100th generation). 86 

 87 

(a)                               (b) 88 

 89 

(c)                              (d) 90 

 91 
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Figure 10 93 

Comparison of the BMP scenarios selected randomly from the near Pareto optimal solutions of the 94 

10th generation from the proposed approach (a: 32.4% reduction rate of soil erosion and 0.51 95 

million RMBY net cost) and the random approach (b: 21.2% reduction rate of soil erosion and 96 

0.53 million RMBY net cost), respectively. (CM = Closing measures, ABHMP = Arbor-bush-herb 97 

mixed plantation, LQFI = Low-quality forest improvement, OI = Orchard improvement.) 98 

 99 
(a)                               (b) 100 
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Figure 11 102 

Comparison of the BMP scenarios selected randomly by the near Pareto optimal solutions of the 103 

100th generation from the proposed approach (a: 47.7% reduction rate of soil erosion and 1.22 104 

million RMBY net cost) and the random approach (b: 47.9% reduction rate of soil erosion and 105 

1.15 million RMBY net cost), respectively. (CM = Closing measures, ABHMP = Arbor-bush-herb 106 

mixed plantation, LQFI = Low-quality forest improvement, OI = Orchard improvement.) 107 

 108 

(a)                               (b) 109 
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