# A modular and parallelized modeling framework for distributed watershed modeling and scenario analysis

#### <u>Liang-Jun Zhu (朱良君)</u>, Junzhi Liu, Cheng-Zhi Qin, A-Xing Zhu

State Key Laboratory of Resources and Environment Information System,

Institute of Geographic Sciences and Natural Resources Research,

Chinese Academy of Sciences



11/05/2021

### Outline



- **Basic idea and overall design**
- **Case study** 
  - **Conclusion and future work**

#### 1 Background and study issues

- Conflict between economic development and environmental conservation presents a huge challenge to watershed management.
- Integrated watershed modeling and scenario analysis provides a modern research paradigm to address this challenge.



#### Key issues of integrated watershed modeling and scenario analysis

#### Systematization Spatialization Spatial explicitly distribution Physical geographic processes Spatial interaction Human activity effects → Representation in process simulation Ouantification of watershed and best management practice (BMP) response to management scenarios configuration Watershed modeling & Ease of use Efficiency Reducing computation scenario analysis Intelligent inference amount User-friendly interface Parallel computing → Non-expert users → High efficiency to **Decision-making support** answer → Reliable and effective A flexible, extensible, and efficient modeling framework is needed!

朱阿兴,朱良君,史亚星,秦承志,刘军志. 2019. 流域系统综合模拟与情景分析——自然地理综合研究的新范式? 地理科学进展, 38(8): 1111–1122. 3

#### **Existing modeling framework for watershed modeling**

- Environmental Modeling Framework (EMF)
  - ✓ Standard interfaces **for coupling existing models**
  - ✓ **Parallel computing** support for common operations (e.g., regridding)
  - May not provide specific support for the parallelization of distributed watershed models



- Watershed Modeling Framework
  - **EMF specifically designed for watershed modeling**, e.g., OMS3 (David et al., 2013) and ECHSE (Kneis, 2015).
  - Shared-memory multithreaded programming (e.g., OpenMP), limited scalability on distributed-memory platforms (e.g., SMP cluster).

How to design a **flexible**, **extensible**, **and efficient watershed modeling framework** to promote research of integrated watershed modeling and scenario analysis?

- Flexible and extensible
- Efficient
- Easy-to-use



#### 2 Basic idea and overall design

 $\checkmark$ 

...

#### Hierarchical spatial discretization of a watershed from different perspectives:

- ✓ Watershed processes: Subbasin (including channel) hillslope slope position patch (Band, 1999)
- **Distributed watershed simulation**: Subbasin (including channel), grid cell or patch, etc.
- Management practice allocation: Subbasin, hillslope, slope position, grid cell or patch, etc.

Watershed and subbasins Hillslope and slope positions Grid cell or patch



#### For distributed watershed simulation

- Each watershed subprocess is simulated on one type of simulation unit by one module using a specific algorithm.
- Each module inherits from standard and concise interfaces which exposes IO information.
- User-configured modules are dynamically loaded and linked as a simulation workflow.



Watershed modelers can focus on and contribute specific simulation algorithms!

#### Flexible and extensible modular structure



#### > For watershed modeling and scenario analysis

- Several modules (or packages) for different steps.
- Each module (or package) defines a general, configurable, and extensible workflow.
- Generic independent functions are also summarized, e.g., repeatedly executing models and gathering outputs.

Watershed modelers can easily extend data for simulation and algorithms for model-level applications.

#### Efficient and easy-to-use multi-level parallel computing middleware

- > Model-level parallelization: job management by workload manager, e.g., SLURM, SCOOP in Python
- > Inside-model parallelization: two-level parallelization strategy (Liu et al., 2014, 2016) that exploit the

parallelizability at both coarse-grained and fine-grained levels.



#### **SEIMS**, short for <u>Spatially Explicit Integrated Modeling System</u>

- Programming languages:
  - C++: SEIMS main programs and modules
  - **Python:** Utility tools of entire workflow, e.g., data preprocessing, sensitivity analysis, auto-calibration, and scenario analysis.
- > Data management: MongoDB database, for its support of flexible data structure and high IO concurrency
- Module library: covering hydrology, erosion, nutrient cycling, and plant growth processes from WepSpa, SWAT, LISEM, etc.
- Source code: freely available in Github <u>https://github.com/lreis2415/SEIMS</u>

## SEIMS aims to facilitate rapid development of parallelized watershed models and model-level application tools such as scenario analysis.

#### 3 Case study – scenario analysis of BMP for mitigating soil erosion

Study area: Youwuzhen watershed (~5.39 km<sup>2</sup>, 53,933 grid cells with a 10 m resolution), Fujian province, China

- Location: in the upstream of Ting river, the typical red-soil hilly region in southeastern China
- *Terrain*: low hills with steep slopes (average slope: 16.8°), broad alluvial valleys
- Climate: under a mid-subtropical monsoon moist climate
- Landuse: primarily, forest (59.8%), paddy field (20.6%), and orchard (12.8%)
- **Soil**: red soil (dominant type, infertile, acidic, nutrient-deficient, poor in organic matter, low capacity for holding and supplying water) and paddy soil.
- Representative BMPs for mitigating soil erosion







Closing measures (CM)



Arbor-bush-herb mixed plantation (ABHMP)



Low-quality forest improvement (LQFI)

Orchard improvement (OI)

(Chen et al. 2017; Qin et al., 2018)

| Systematization |   |
|-----------------|---|
| Spatialization  |   |
| Efficiency      | > |
| Ease of use     | > |
| Decision-making | > |

01 ### Driver factors, including meteorological data and precipitation TimeSeries | | TSD RD 02 1 Interpolation 0 | Thiessen | ITP 03 **2** 04 ### Hillslope processes Soil temperature | Finn Plauborg | STP FP 05 3 PET | PenmanMonteith | PET PM 06 4 Interception | Maximum Canopy Storage | PI MCS 07 5 Snow melt | Snowpeak Daily | SNO SP 08 6 Infiltration | Modified rational | SUR MR 09 7 Depression and Surface Runoff | Linsley | DEP LINSLEY 10 8 Hillslope erosion | MUSLE | SERO MUSLE 11 9 Plant Management Operation | SWAT | PLTMGT SWAT 12 10 Percolation | Storage routing | PER STR 13 11 Subsurface | Darcy and Kinematic | SSR DA 14 12 SET | Linearly Method from WetSpa | SET\_LM 15 13 16 14 PG | Simplified EPIC | PG EPIC 17 15 ATMDEP | Atomosphere deposition | ATMDEP NUTR TF | Transformation of C, N, and P | NUTR TF 18 16 Water overland routing | IUH | IUH OL 19 17 Sediment overland routing | IUH | IUH SED OL 20 18 Nutrient | Attached nutrient loss | NUTRSED 21 19 22 20 Nutrient | Soluble nutrient loss | NUTRMV Pothole | SWAT cone shape | IMP SWAT 23 **21** Soil water | Water balance | SOL WB 24 22 25 ### Route Modules, including water, sediment, and nutrient Groundwater | Linear reservoir | GWA RE 26 23 27 24 Nutrient | groundwater nutrient transport | NUTRGW Water channel routing | MUSK | MUSK CH 28 **25** Sediment routing | Simplified Bagnold eq. 29 **26** SEDR SBAGNOLD Nutrient | Channel routing | NutrCH QUAL2E 30 **27** 

**Loading and preprocessing** driver factors, e.g., climate data

Hillslope processes, e.g., potential evapotranspiration, canopy interception, depression storage, surface runoff, percolation, interflow, plant growth, soil loss.

**Channel routing processes** of water, sediment, nutrient, etc.

#### Parallel performance of the two-level parallelization strategy



- Subbasin level parallelization (MPI version) is greater than that of basic simulation unit level (OpenMP version).
- The two-level parallelization (MPI&OpenMP version) is dramatically improved than any single level parallelization and greater than TMSR.

#### **Consideration of spatial interaction of BMPs in scenario analysis**

Systematization Spatialization Efficiency Ease of use Decision-making

- > Spatial optimization of BMPs based on slope position units (Qin et al., 2018; Zhu et al., 2019):
  - Spatial interaction of BMPs configured along hillslope
  - Domain knowledge such as integrated watershed management scheme in practice
- Adjust boundaries of slope position units to consider the optimization of BMP areas (Zhu et al., 2021).



#### **Results: Near-optimal Pareto solutions and hypervolume index**



Near-optimal Pareto solutions for the 50<sup>th</sup> and 100<sup>th</sup> generations Hyervolume index changes with generations

#### Boundary-adaptive method performed the best

 Significantly enlarge the search space and obtain optimal BMP scenarios with better cost-effectiveness and higher optimization efficiency.

Zhu L-J, Qin C-Z\*, Zhu A-X. **2021**. Spatial optimization of watershed best management practice scenarios based on boundary-adaptive configuration units. *Progress in Physical Geography: Earth and Environment*, 45(2):207–227.

#### **Results: spatial distribution of optimized BMP scenarios**



- Compared with fixed boundary units, BMP scenarios
  based on boundary-adaptive units showed more
  fragmented or even mosaic spatial distribution (b and c compared to a).
- With more hillslopes underwent boundary adjustments,
  utilizing boundary adjustment from the initialization of
  optimization produce better BMP scenarios (c compared
  to b).

**SEIMS**: A modular and parallelized modeling framework for distributed watershed modeling and scenario analysis

- Systematization: Flexible and extensible modular structure
- Spatialization: Spatially explicit modeling and scenario analysis
- Efficiency: Multi-level parallel computing middleware
- Ease of use: Transplant/rewrite/write new SEIMS modules in a nearly serial programming manner
- Decision-making: Knowledge-driven scenario analysis

#### **Future direction – Intelligent modeling environment**

Systematization Spatialization Efficiency Ease of use Decision-making

EasyGC platform (Easy Geo-Computation) http://easygeoc.net:8090

Directed by Prof. A-Xing Zhu and Prof. Cheng-Zhi Qin

- Automatic data discovery and preparation
- Intelligent model construction
- Efficient model execution in the Cloud
- ...





科学院

## Thanks for your attention!

#### Selected peer-reviewed papers:

- Zhu L-J, Qin C-Z\*, Zhu A-X. 2021. Spatial optimization of watershed best management practice scenarios based on boundary-adaptive configuration units. Progress in Physical Geography: Earth and Environment, 45(2):207–227.
- 朱阿兴,朱良君\*,史亚星,秦承志,刘军志. 2019. 流域系统综合模拟与情景分析——自然地理综合研究的 新范式? 地理科学进展, 38(8): 1111-1122.
- Zhu L-J, Liu J\*, Qin C-Z\*, Zhu A-X. 2019. A modular and parallelized watershed modeling framework. Environmental Modelling & Software, 122: 104526.
- Qin C-Z, Gao H-R, Zhu L-J\*, Zhu A-X, Liu J-Z, Wu H. 2018. Spatial optimization of watershed best management practices based on slope position units. Journal of Soil and Water Conservation, 73(5): 504–517.

**Open-source software:** 

SEIMS (Spatially Explicit Integrated Modeling System): https://github.com/lreis2415/SEIMS



zlj@lreis.ac.cn https://zhulj.net